
6 APPL THE NASA ACADEMY OF PROGRAM AND PROJECT LEADERSHIP

ASK 19 FOR PRACTITIONERS BY PRACTITIONERS 7

I WASN’T EXPECTING TO RETURN TO THE VIKING PROJECT,
but as they were approaching the encounter, my division
manager called me into his office and said, “Bob, I really
need your help.” When my division manager started
talking to me like that, I knew I was going to say “yes”
before I even heard what he needed me to do.

PINPOINTING THE PROBLEM
The First-Order Image Processing and Enhancement
System (VISRAP) group had run into some problems.
The supervisor in charge of that group had gotten
heavily involved in trying to get new state-of-the-art
hardware to work and wasn’t managing the software
development too well. They were partially through
coding and trying to integrate the software and were
running into major difficulties. It just flat out didn’t run.

One of the objectives was to get Viking Orbiter image
data to the scientists as fast as possible so that they could
make the best decision about where to land the Viking
Lander on Mars.They wanted to make a pass of the planet
in order to send back the Orbiter image data in real time.
They would then process and enhance the images so they
could use them to choose the best landing spot.

As soon as I came on board, I realized that the
group’s problems had less to do with technology than
with poor development processes and communications.
Due to the schedule pressure the programmers had
stopped documenting design changes that they were
putting into the code. I had run into this problem before
on other projects. The programmers got so caught up in
the coding and testing that the design documents were
never updated, and the other team members had
outdated versions of the interface design and functions
between the design elements. When they went to test or
use the software, new versions of the code had different
functions and interfaces than the design documentation
specified, and those that other team members were

I joined the Viking project in its early days

in 1971 as the Orbiter Software System

Engineer and stayed on board through

several months after launch. Viking was a

significant step in the technology of onboard

computers and software for NASA and the

Jet Propulsion Laboratory (JPL). But with

those advances came many problems to

solve. We’ve come a long way since then as

well, but some of the fundamental issues,

the problems we faced, and the solutions we

found are all still relevant today.

using for their code. The design elements were incom-
patible and would not operate together.

By the time that I was called in, several months of
not keeping the design documents updated had passed
and the programmers couldn’t remember all they’d
designed and coded. They had to analyze the code to
determine the correct interfaces and functions, and
there were no updated design documents to help them.
They also had not updated the test documents; so they
had to spend five or ten times as long to fix a problem
during integration that could’ve been easily solved if the
documentation was current and correct. Months on the
project had gone by like this. When the team put their
software together for integration and testing: the
software failed. There was no current documentation to
help them understand why.

I saw it primarily as a management issue. The
programmers and the other team members had not
been given the direction, disciplined process, and
motivation to ensure successful development and
integration of the product as a whole. Staying on
schedule was stressed as a major priority, and they
lacked the focus to understand what it would take to
deliver on time. They followed no system for coding and
documentation; basically, there was no control.

CRACKING THE CODE
So recognizing the problem is one thing, but solving
it is another.

I understood how they had gotten themselves into
this mess. In fact, it was learning from my own mistakes
that helped me begin to tackle their problem. When I’m
in the creative mode of coding, I can think of a million
things I should have done better in the design phase. It
takes a lot of discipline not to just throw the changes
into the code without concurrently coordinating the
design and updating the design and test documents. I
knew I would have to do my best to provide the team
with that same discipline.

The programmers were anxious about my takeover
as soon as JPL management made the announcement.
First, they didn’t like me because I was an outsider.
Second, these were programmers who previously had
the freedom to do all the coding they wanted without

documentation. Then I came in and slammed on the
brakes. I said, “We’re turning this ship around and going
back to the drawing board.”

The first thing I did was to shut everything down. I
said, “There will be no more coding, designing, or fixing
of errors until we’ve caught up the documentation.” I’m
still looking for the first programmer that would rather
do documentation than code, so let’s just say that they
were not happy campers! I laid out a controlled process
to keep these problems from repeating: coordinate the
design to resolve the interface and incompatibility
problems, document the agreed-upon design changes,
and correct the code to reflect the coordinated and
compatible design.

To do this, we had to keep programmers who
knew—and hopefully could remember— what they had
done huddled around the machine. It was a really ineffi-
cient way to do business, but my plan was for this to be
the last time we’d be wading through all the old code.
Now each time we found a problem, it was coordinated
across the team and documented.

Because of this “catch up” process, several weeks
were tacked onto our already stretched schedule to get
the design understood, coordinated, and put to use. But
I was convinced that we could make up some of the time
by testing efficiency; we’d perform the team coordina-
tion and keep the design and test documents current.
Each time they completed a certain amount of the
design updates, we reviewed them together. They made
it clear that they were still annoyed with me, but that was
okay. We were on the road to recovery.

Once we had a handle on the documentation, they
resumed coding and testing. I would schedule updates
every two to three weeks to address changes that had
been agreed upon by all affected staff. After the schedule
was coordinated and everyone agreed to it, the entire
team got a copy of our new plan.

When we got started on coding the coordinated
changes, for a while I still went to their offices every day and
asked them to “show me your documentation.” My intent
was not to micromanage, but to hammer home the impor-
tance of working as a team. They started doing it on their
own, at first out of resentment to show me they could. But
my strategy worked. Believe it or not, they began to see that

8 APPL THE NASA ACADEMY OF PROGRAM AND PROJECT LEADERSHIP

I CAME IN AND

SLAMMED ON THE BRAKES.

I SAID, “WE’RE TURNING THIS

SHIP AROUND...”

The Viking lander model.

WATCH AND LEARN

BOB LOESH has figured out a few
things over the length of his 47-year
career, which he began as a

programmer at the RAND Corporation in 1957.
Currently he is the Director of Engineering and
Technology Development at Software
Engineering Sciences, Inc., but the majority of
his time was spent at the Jet Propulsion
Laboratory working on high profile projects
including Viking and Galileo. During that time, he
served as NASA’s “go-to” guy for software
problems, uncovering what he believes to be the
major obstacles keeping software project
managers from reaching their full potential.

“Number one, we don’t have any basic, formal
training—either at the universities or in
companies—for our software project manager
people,” says Loesh. “We put them on a project,
they get along with people, they relate to
management, and we promote them.” But he
says there is no training or formal way for them
to learn techniques. And because of this, there
are not many good models of successful software
project managers for them to emulate.

This goes hand in hand with what Loesh describes
as a second major problem: lack of mentorship.
“We don’t mentor our people. We don’t pass
along our experiences, guide them through
problems, or let them watch what we do and learn
from it,” he says. “You look at occupations like
bricklaying or machine work, and there’s an
apprenticeship. They do that for a couple of years
and they learn all the right things to do.”

Without formal training or a way to learn from of
others, each manager is thrust into their
software project with only the lessons of their
own experience. Each new project manager
continually recreates the wheel. Loesh adds,
“We’re going to repeat these problems over and
over again unless we figure out a way to
effectively train new software project managers.”

ASK 19 FOR PRACTITIONERS BY PRACTITIONERS 9

I MANAGED THE PROJECT

BY WALKING AROUND

AND INTERACTING WITH

THE TEAM.

other people’s documentation was useful. They could get
things done quicker and with a lot less stress and effort.

After several weeks, the system started showing
signs of working correctly during the integration testing.
And for accomplishing the integration, the level of team
efficiency improved by orders of magnitude. The
success and pride that came from making the system
work was a huge motivator.

HERE TO STAY
At this point I continued to make it my job, several times
a day, to hand-carry proposed changes to each person. I’d
say, “Let’s talk about these changes,” and they’d tell me
they didn’t have the time. So I’d ask them, “What do you
need to be able to get the time this afternoon?” Before
long, people started realizing that I wasn’t going away.

As I managed the project by walking around and
interacting with the team, I got to know which people
were a little quicker and which ones had more trouble. I
also got to know which people weren’t good at
managing their workloads. I kept the lines of communi-
cation open about how much work each team member
was carrying, and which person was the best choice to
implement new changes.

I also got to actually see the work that was taking
place rather than reading an email or hearing about it on
the phone. It took a lot of personal time; but after making
major process changes and overcoming huge setbacks,
the last thing I wanted was for the project to fail because
of bad work habits or the lack of interest on my part.

The time I invested paid off in the end. The images
of Mars were delivered by this group to the scientists
and mission designers on schedule, and they were used
to accomplish a successful landing. •

LESSONS

• Discipline AND creativity are the keys to getting a
software project completed on time.
• A direct contact, communication-by-walking-around
management style can be the most effective control system.

QUESTION

To be a good project manager, is it necessary that your team
likes you?

An artist’s rendering of the Viking spacecraft.

